Induction

Lecture 2 Jan 17, 2021

Proof by Induction

- SET UP: Consider a statement/formula that involves an integer N, and suppose we can prove the followings:
- (1) The statement is correct for some initial value N_0
- (2) Whenever the statement is true for N, it will also be true for N+1

Then (1) and (2) imply that the statement is TRUE for all $N \ge N_0$.

What is going on? First we know the statement is true for N_0 by (1). Then applying (2), we know it is true for $N_0 + 1$. Applying (2) again, we know it is true for $(N_0+1) + 1 = N_0 + 2$. Applying (2) repeatedly we find that the statement is true for all $N \ge N_0$

Proof by Induction

- Equivalent Setup: Consider a statement/formula that involves an integer N, and suppose we can prove the followings:
- (1) The statement is correct for some initial value N_0
- (2) Whenever the statement is true for all 1, 2, ..., N, it will also be true for N+1

Then (1) and (2) imply that the statement is TRUE for all $N \ge N_0$.

Q1. For all positive integers N, show that $1 + 2 + 3 + \dots + N = \frac{N(N+1)}{2}$

Answer: We prove \bigstar by Induction.

(1) We check that the statement is true for $N_0 = 1$:

Putting N=1 in the left-hand side of \bigstar we get 1

Putting N=1 in the right-hand side of \checkmark we get $\frac{1(1+1)}{2} = 1$

So \bigstar is correct when N=1

(2) We show if $\uparrow \uparrow$ is true for N, it will be remain true if we change N to N+1

Step (2)

$$1 + 2 + \dots + N + (N + 1) = (1 + 2 + \dots + N) + (N + 1) =$$

$$\frac{N(N+1)}{2} + (N+1) = \frac{N(N+1) + 2(N+1)}{2} =$$
This is where the use the assumption
that the statement is true for N
$$\frac{(N+2)(N+1)}{2}$$

Similar examples to practice at home

Q. Show that

-
$$1^2 + 2^2 + 3^2 + \dots + N^2 = \frac{N(N+1)(2N+1)}{6}$$

- $1 + 4 + 7 + \dots + (3N - 2) = \frac{N(3N-1)}{2}$

- Q2. Consider the famous Fibonacci sequence $\{x_n\}_{n=1,2,3,\dots}$, defined by the relations
- $-x_1 = 1, x_2 = 1,$
- and $x_n = x_{n-1} + x_{n-2}$ for $n \ge 3$

Show that

$$x_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right] \quad \bigstar$$

Answer. Before starting the proof, lets calculate some of x_n for small n

 $x_3 = x_1 + x_2 = 2$, $x_4 = 3$, $x_5 = 5$, $x_6 = 8$, $x_7 = 13$, ... It is a magic that the formula always yields integers!

• Answer. We prove typinduction on n.

- (1) Putting n=1 in the formula we get
$$x_1 = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^1 - \left(\frac{1-\sqrt{5}}{2} \right)^1 \right] = \frac{1}{\sqrt{5}} \frac{2\sqrt{5}}{2} = 1$$

- (2) Assuming the formula is correct for n, we show it is also correct for We have

$$\begin{aligned} x_{n+1} &= x_n + x_{n-1} = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right] + \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n-1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n-1} \right] = \\ \frac{1}{\sqrt{5}} \left[\left(1 + \frac{1+\sqrt{5}}{2} \right) \left(\frac{1+\sqrt{5}}{2} \right)^{n-1} - \left(1 + \frac{1-\sqrt{5}}{2} \right) \left(\frac{1-\sqrt{5}}{2} \right)^{n-1} \right] \end{aligned}$$

Check that

$$\left(\frac{1+\sqrt{5}}{2}\right)^2 = \frac{1+2\sqrt{5}+5}{4} = 1 + \frac{1+\sqrt{5}}{2}$$
 and $\left(\frac{1-\sqrt{5}}{2}\right)^2 = \frac{1-2\sqrt{5}+5}{4} = 1 + \frac{1-\sqrt{5}}{2}$

Which gives us

$$\frac{1}{\sqrt{5}} \left[\left(1 + \frac{1 + \sqrt{5}}{2} \right) \left(\frac{1 + \sqrt{5}}{2} \right)^{n-1} - \left(1 + \frac{1 - \sqrt{5}}{2} \right) \left(\frac{1 - \sqrt{5}}{2} \right)^{n-1} \right] = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n+1} \right]$$

• Q3. Prove that $a^2 - 1$ is divisible by 8 for all odd integers a

Solution. First, since $a^2 = (-a)^2$, we may assume a is a positive integer

Every positive odd integer has the form a = 2n - 1 for some $n \ge 1$

We prove the statement by induction on n.

- 1) Putting n = 1, we get a = 1 and $a^2 1 = 0$ which is divisible by 8
- 2) If the statement is true for a=2n-1, we show it will be also true for a+2= 2(n+1)-1: $(a+2)^2 - 1 = a^2 + 4a + 4 - 1 = a^2 - 1 + 4(a+1) = a^2 - 1 + 8n$

Since $a^2 - 1$ and 8n are both divisible by 8, their sum will also be divisible by 8

Similar examples to work at home*

- Prove that $5^{2n+1} + 2^{2n+1}$ is divisible by 7 for all $n \ge 0$.
- Prove that $a^4 1$ is divisible by 16 for all odd integers a.
- Prove that $a^{2n} 1$ is divisible by 4×2^n for all odd integers a, and for all integers n.
- Prove that $n^3 + 2n$ is divisible by 3 for all integers n.
- Prove that $17n^3 + 103n$ is divisible by 6 for all integers n.
- Prove that $2^n + 1$ is divisible by 3 for all odd integers n

^{*} Questions are taken from https://www.math.waikato.ac.nz/~hawthorn/MATH102/InductionProblems.pdf

Examples in geometry

■ **Q4.** Prove that a <u>convex</u> n-gon can be divided into n-2 triangles.

A 6-gon which is not convex

A 6-gon which is convex

Examples in geometry

• Q4. Prove that a 2ⁿ ×2ⁿ board with a single square missing can be covered using L-shaped pieces:

• **Answer.** We prove this by induction

- For n=1 : a 2x2 board with one square removed is precisely the L-shaped piece
- Assuming the statement is true for n and show that it is true for n+1

More questions to think at home

- Q6. For what natural numbers $n \ge 1$, it is possible divide a square into n squares (of not necessarily equal sizes).
- Q7. Prove, using induction, that $\sqrt{2}$ is not a rational number